

OK 46.00

Тип покрытия – рутилово-целлюлозное. Уникальный в своем классе электрод, обладающий великолепными сварочнотехнологическими характеристиками, предназначенный для сварки конструкций из низкоуглеродистых и низколегированных сталей с пределом текучести до 380 МПа во всех пространственных положениях на постоянном токе обратной полярности и переменном токе. Электрод отличается относительно слабой чувствительностью к ржавчине, грунтовке, цинковым покрытиям и т.п. загрязнений поверхности изделий, легкостью отделения шлака и формированием гладкой поверхности наплавленного валика с плавным переходом к основному металлу. Благодаря легкости, как первого, так и повторных поджигов, электрод незаменим для сварки короткими швами, прихваток и сварке с периодическими обрывами дуги. В отличие от большинства рутиловых электродов, благодаря возможности выполнять сварку в положении « вертикаль на спуск&гаquo; в сочетании со значительно более низкими пороговыми значениями минимального тока, при котором стабильно горит дуга, ОК 46.00 позволяют выполнять сварку тонкостенных изделий. Низкое напряжение холостого хода и стабильное горение дуги на предельно малых токах позволяет использовать эти

```
электроды для сварки от бытовых источников.
<strong>Tok:</strong> ~ / = (+ / &nbsp; )
<strong>Пространственные положения при сварке:</strong> 1, 2, 3, 4, 5, 6
<strong>Напряжение холостого хода:</strong> 50 В
<strong>Bыпускаемые диаметры:</strong> 1,6; 2,0; 2,5; 3,0; 3,2; 4,0 и 5,0 мм
<strong>Peжимы прокалки:</strong> 70-90&deg;C, 60 мин
rowspan="2" style="border-top: 1pt dashed #99999; border-left: 1pt dashed #99999; border-bottom: none; border-right: none; padding: 0.75pt;">
     <strong>Классификации и одобрения</strong>
    <strong>Типичные характеристики наплавленного металла</strong>
     <strong>Химический состав, %</strong>
    <strong>Механические свойства</strong>&nbsp;
    >
    ΓΟCT 9467: 946
    ТУ 1272-124-55224353-2013
    ГОСТ Р ИСО 2560-A: E 38 0 RC 1 1
    EN ISO 2560-A:<span style="font-size: 8pt;">E 38 0 RC 1 1</span>
    <span style="font-size: 8pt;">AWS A5.1: E6013
    HAKC: Ø 2.5; 3.0; 4.0; 5.0 мм
    <span style="font-size: 8pt;">ABS: 2</span>
    BV: 2
    DNV.GL: II
    LR: 2
    RS: 2
    PPP: 2 
    C\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \&nb
    Mn        
    Si         
    P      max 0,030
    S      max 0,030 
    στ  400 MΠa
    σ B  510 M∏a
    δ    28%
    <strong>KCV:</strong>
    88 Дж/см<sup>2</sup> при 0&deg;C
    ≥35 Дж/см<sup>2</sup> при -20&deg;C
    <strong>KCU:</strong>
    ≥110 Дж/см<sup>2</sup> при +20&deg;C
    ≥40 Дж/см<sup>2</sup> при -40&deg;C
```

Классификации	AWS A5.1 : E6013 EN ISO 2560-A : E 38 0 RC 1 2	
	ГОСТ Р ИСО 2560-А : E 38 0 RC 1 2	
	FOCT 9467 : 346	

OK 46.00

Одобрения	ABS 2
	BV 2 DNV 2
	GL 2
	LR 2 RS 2
	PPP 2

Одобрения на материалы выдаются с привязкой к заводу изготовителю. Подробную информацию можно получить в представительствах ESAB.

Сварочный ток	AC, DC+-
Тип сплава	Carbon Manganese
Тип покрытия	Rutile-cellulosic covering

Механические свойства при растяжении					
Состояние	Предел текучести	Предел прочности при растяжении	Удлинение		
ISO					
После сварки	400 MPa	510 MPa	28 %		

Типичные свойства образца с V-образным надрезом по Шарпи				
Состояние	Температура испытания	Работа удара		
ISO				

Хим. состав наплавленного металла			
С	Mn	Si	
0.08	0.42	0.30	

Данные наплавки						
Диаметр	Ток	В	Кол-во электродов/кг наплавл. Металла	Fusion time per electrode at 90% I max	кпд, %	Производительнос ть наплавки при токе 90% от максимального
1.6 x 300.0 mm	30-60 A	26 V	263	36 sec	63 %	0.38 kg/h
2.0 x 300.0 mm	50-70 A	25 V	172	38 sec	60 %	0.55 kg/h
2.5 x 350.0 mm	60-100 A	22 V	86	50 sec	65 %	0.8 kg/h
3.0 x 350.0 mm	70-140 A	32 V	77	46 sec	51 %	1.0 kg/h
3.2 x 350.0 mm	80-150 A	22 V	53	57 sec	65 %	1.3 kg/h
3.2 x 450.0 mm	80-150 A	22 V	43	63 sec	64 %	1.33 kg/h
4.0 x 400.0 mm	100-200 A	26 V	33	64 sec	60 %	1.69 kg/h
4.0 x 450.0 mm	100-200 A	23 V	33	76 sec	58 %	1.94 kg/h
5.0 x 350.0 mm	150-290 A	24 V	24	87 sec	60 %	2.3 kg/h
5.0 x 400.0 mm	150-290 A	30 V	22	71 sec	56 %	2.2 kg/h
5.0 x 450.0 mm	150-290 A	24 V	31	114 sec	60 %	2.3 kg/h

410003-ru_RU-FactSheet_Main-01 2022-09-07